

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

L_{III} SUBSHELL INTENSITY RATIOS OF Au

Erdal Dikmen^a; Abdullah Zararsiz^b; Mustafa Tan^a; Pervin Arikan^b

^a Faculty of Gazi Education, University of Gazi, Ankara, Turkey ^b Ankara Nuclear Research and Training Center, Ankara, Turkey

Online publication date: 26 June 2002

To cite this Article Dikmen, Erdal , Zararsiz, Abdullah , Tan, Mustafa and Arikan, Pervin(2002) 'L_{III} SUBSHELL INTENSITY RATIOS OF Au', *Spectroscopy Letters*, 35: 1, 63 — 72

To link to this Article: DOI: 10.1081/SL-120013133

URL: <http://dx.doi.org/10.1081/SL-120013133>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

L_{III} SUBSHELL INTENSITY RATIOS OF Au

Erdal Dikmen,¹ Abdullah Zararsız,^{2,*} Mustafa Tan,¹ and Pervin Arıkan²

¹University of Gazi, Faculty of Gazi Education,
06100 Beşevler, Ankara, Turkey

²Ankara Nuclear Research and Training Center,
06100 Beşevler, Ankara, Turkey

ABSTRACT

In this study, L_{III} subshell intensity ratios were measured using an energy dispersive x-ray spectroscopy method. Only the L_{III} subshell of gold was excited by the characteristic x-rays of the element used as the secondary source (Br- K_{α,β} rays from NaBr). The emitted x-rays were measured with a Si(Li) detector system coupled to a multi-channel analyser and computer system. L₁/L_{α1,2}, L_{2,15}/L_{α1,2}, L_{β6}/L_{α1,2} intensity ratios of Au were determined by spectral analysis.

The experimental results are compared with those of other experimenters and with the Scofield calculations.

Key Words: EDXRF; L-subshell; Intensity ratios

*Corresponding author. E-mail: abdullah@taek.gov.tr

INTRODUCTION

Accurate determination of intensity ratios for medium-and high-Z elements are important because of their wide use in many areas of basic and applied science. For example, these data are used in the fields of atomic, molecular and radiation physics and nondestructive testing of materials and elemental analysis using x-ray fluorescence techniques, and they are also important to verify result obtained from the theoretically calculated methods.

In earlier investigations¹⁻¹⁰, all L_I, L_{II} and L_{III} subshells were observed together and these authors have reported only the intensity ratios of the L_α, L_β, L_γ lines because of difficulties arising from the overlapping of L subshell in the L_β region.

The method which was used to obtain the L_{III} subshell spectrum of the elements Pb, Th, U in a previous study¹¹, had been developed in this study, to obtain only Au L_{III} subshell spectra and L₁/L_{α1,2}, L_{2,15}/L_{α1,2}, L_{β6}/L_{α1,2} intensity ratios were determined.

EXPERIMENTAL

A gold foil with thickness 2.5 μm and purity better than 99.9%, was obtained from Goodfellow company. To obtain the L_{III} x-ray spectra of Au a secondary source was used. The secondary source was irradiated by the Ag-K x-rays from a Cd-109 radioisotope source of about 370 MBq and the Au foil was irradiated by the characteristic K-x rays of this secondary source as shown in the experimental set up in Fig. 1. The secondary source was chosen such that its characteristic x-ray will excite the L_{III} subshell of the element concerned but will not excite the L_I and L_{II} subshell of Au. Br K x-rays ($K_{\alpha} = 11.921 \text{ keV}$, $K_{\beta} = 13.378 \text{ keV}$) was used to excite the L_{III} subshell of the Au. The binding energy of the Au L_{III} subshell is 11.919 keV.

The data were collected by a Si(Li) detector coupled to a Canberra-85 multi-channel analyser. The efficiency calibration of the Si(Li) detector was effected with a calibrated radioisotope variable source (Cu-K, Rb-K, Mo-K, Ag-K, Ba-K, Tb-K x-rays) from Amersham International.

Spectral Analysis

To give an idea of the complexity of the L_{III} subshell spectra, a gold L x-ray spectrum obtained by direct excitation of gold foil with the Ag K-x rays of Cd-109 is shown in Fig. 2.

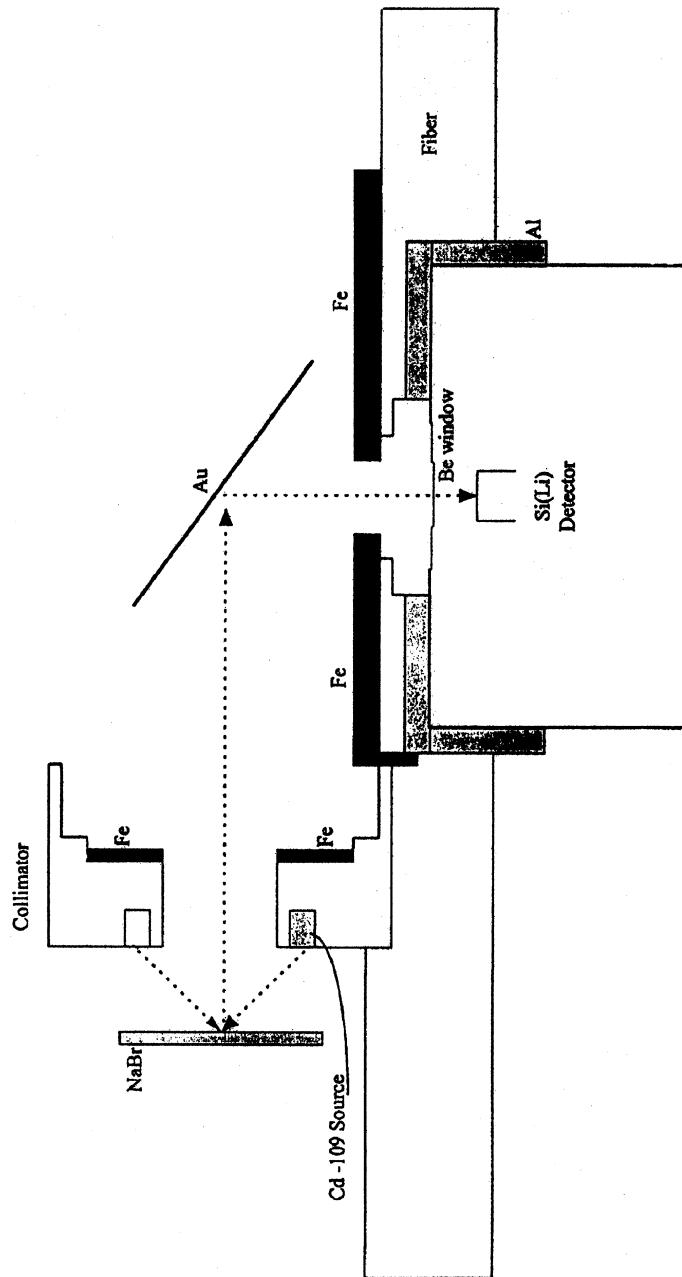


Figure 1. Experimental set up used to measure L_{III} X-rays.

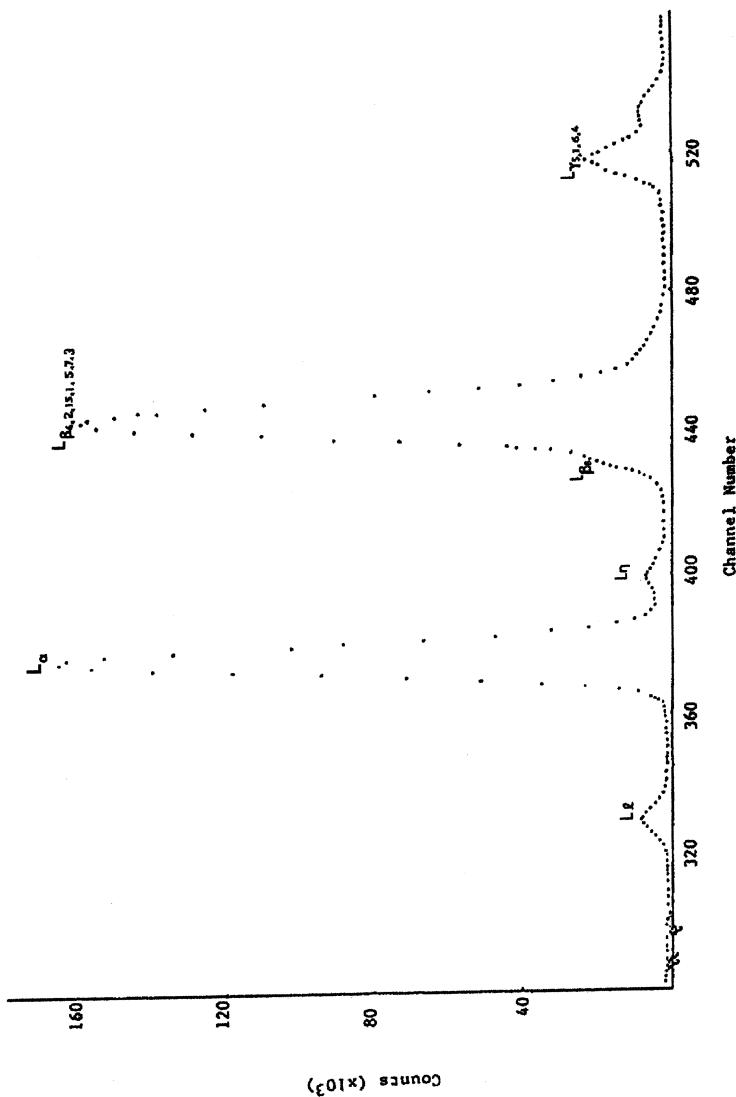


Figure 2. Gold L X-ray spectrum obtained by excitation of gold with Cd-109 source.

The Cd-109 photons, which are scattered Rayleigh (R) and Compton (C) from the secondary source are unfortunately capable of exciting the gold in the L_I and L_{II} subshell. To eliminate this effect a new scatterer source, which has the same I_R/I_C scattering ratio for the photon of the main source (Cd-109) as that of the secondary source, was prepared by mixing Co₂O₃ and cellulose samples in different ratios. All Compton and Rayleigh intensities (I_C, I_R) were calculated by the AXIL software program and I_R/I_C values against the amount of cellulose in Co₂O₃ are shown in Fig. 3. Also these values vs. amount of cellulose in Co₂O₃ were fitted to the following analytical form;

$$(I_R/I_C) = 0.632 + 0.240 \cdot \exp(-1.237 \cdot S) \quad (1)$$

with $r = 0.997$ and S is amount of cellulose in Co₂O₃.

The I_R/I_C ratio of the scatterer sample used for determination of the L_{III} subshell intensity ratio of gold was 0.687 and on the other hand the amount of the added cellulose (S) in Co₂O₃ is calculated by using this value and Eq. (1). The scatterer sample prepared was used instead of a secondary source and a spectrum of L x-rays caused by scattered Cd - 109 photons obtained (Shown in Fig. 4). This spectrum was time normalised and subtracted from of the L_{III} subshell spectrum. The stripped spectrum of the only L_{III} subshell of gold obtained in this way is shown in Fig. 5.

RESULTS AND DISCUSSION

The data collection time was chosen to ensure good statistics for each peak. The L_I, L_{α1,2}, L_{β6} and L_{β2,15} intensities were computed graphically after background subtraction and efficiency corrections were done. The efficiency correction was determined by using the absorption in the air path and the Be-window of the detector.

The error in efficiency calibrator is due to the errors in the reported activities of the standard sources and intensities of standard lines. In this work the quoted error limits on L_I/L_{α1,2}, L_{2,15}/L_{α1,2} and L_{β6}/L_{α1,2} values include an additional 8% uncertainty in the photo - peak detection efficiency.

L_{III} subshell intensity ratio values of Au are given in Table 1. The present experiment values of L_I/L_{α1,2}, L_{2,15}/L_{α1,2} agree with experimental values of Rao et al.¹² Rao et al.¹³, Jesus et al.³, Salem et al.¹ and Scofield theoretical values.¹⁴ But, the L_{β6}/L_{α1,2} value was about three time different from the values obtained by other worker and from the theoretical value.

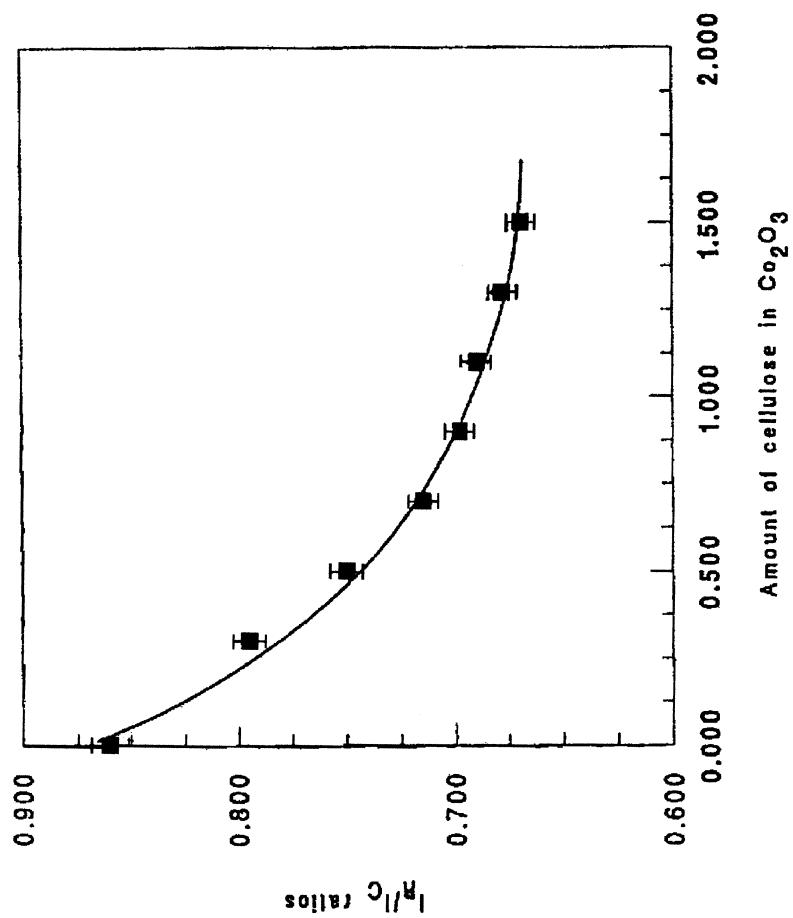


Figure 3. I_R/I_C ratios vs. amount of cellulose in Co_2O_3 .

L_{III} SUBSHELL INTENSITY RATIOS

69

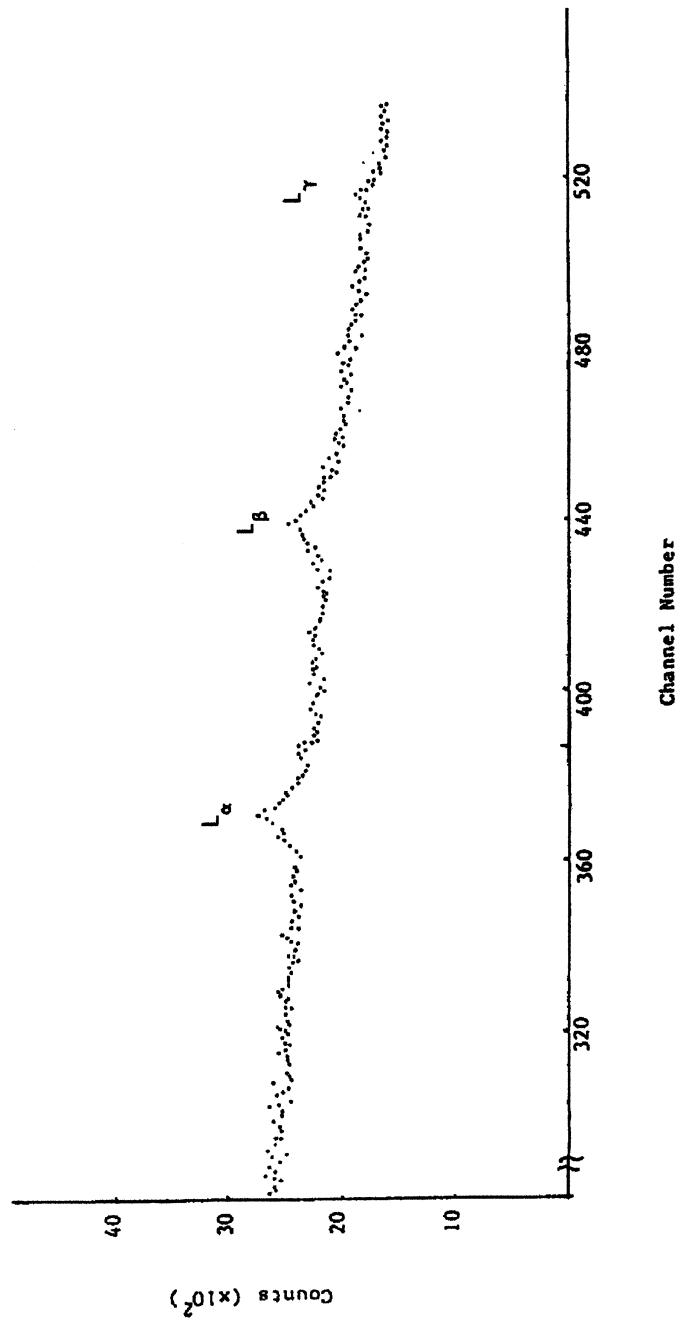


Figure 4. Gold L X-ray spectrum obtained by using scatterer sample.

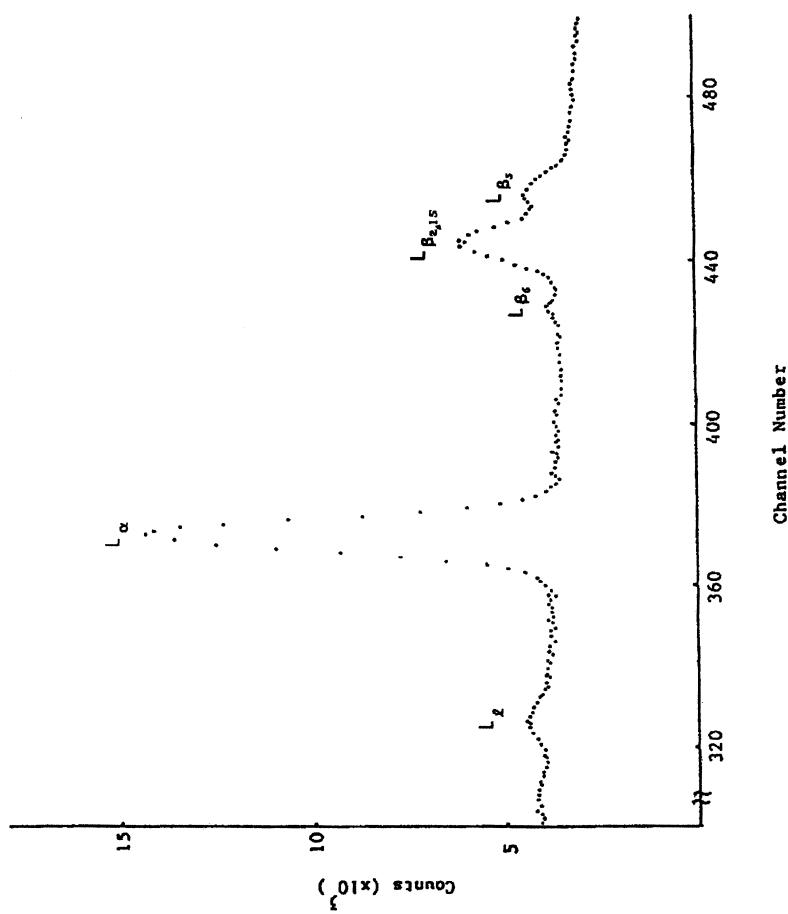


Figure 5. Gold L_{III} subshell spectrum.

Table 1. L_{III} Subshell Intensity Ratios

Intensity Ratio	Present				Theoretical Calculation	
	Exp.	Ref. 12	Ref. 13	Ref. 1	Ref. 3	
L ₁ /L _{α1,2}	0.0464 ± 0.0025	0.052	0.048 ± 0.004	—	—	0.05027
L _{α1,2} /L ₁	—	—	—	—	21 ± 2	19.8926
L _{2,15} /L _{α1,2}	0.2316 ± 0.0118	—	—	0.2510	—	0.17513
L _{β6} /L _{α1,2}	0.0045 ± 0.0003	—	—	0.012	—	0.01227

Possible sources of errors include; counting statistics, background determinations, spectrometer efficiency and sample and air absorption. Of these, the first is the most important. And the other hand, in some studies,^{15–16} in the transition of L_{III} subshell at high Z- elements it is observed that the transition of electrical and magnetic dipol and magnetic quadrupol are mixing. Because of that, especially, for the intensity ratio of L_{β6}/L_{α1,2} it is necessary to carry out theoretical calculations by considering the mixtures in these transitions.

REFERENCES

1. Salem, S.I.; Tsutsui, R.T.; Rabbani, B.A. Phys. Rev. **1971**, *A 4*, 1728.
2. Chen, J.R.; Reber, J.D.; Ellis, D.J.; Miller, T.E. Phys. Rev. **1976**, *A 13*, 941.
3. Jesus, A.P.; Pinheiro, T.M.; Niza, I.A., Pibeiro, J.P., Lopes, J.S. Nucl. Instrum. Methods Phys. Res. **1986**, *B 15*, 595.
4. Suringh, S.; Mehta, D.; Garg, M.L.; Kumar, S.; Singh, N.; Mangal, P.C.; Trehear, P.N. J. Phys. **1987**, *B 20*, 3325.
5. Labar, J.L. X-Ray Spectrom. **1987**, *16*, 33.
6. Russ, J.C. Proceeding of the 13th Annual Conference of Microbeam Analysis Society, Ottawa, 1974, 22.
7. Chen, J.R.; Reber, J.D.; Ellis, D.J.; Miller, T.E. Phys. Rev. **1976**, *A 13*, 941.
8. Xu, J.Q.; Xu, X.J. J. Phys. **1992**, *B 25*, 695.
9. Shatendr, A.K.; Allawadhi, K.L.; Sood, B.S. Pramana **1984**, *22*, 79.
10. Şimşek, Ö.; Büyükkasap, E.; Colak, S.; Erdogan, H. Doga Tr. J. of Phys. **1991**, *15*, 522.
11. Tan, M.; Şahin, Y.; Şaplakoğlu, A. X-Ray Spectrom. **1990**, *19*, 233.
12. Rao, D.V.; Gigante, G.E. Physica Scripta **1993**, *47*, 765.
13. Rao, D.V.; Gigante, G.E.; Cesareo, R. Phys. Rev. **1993**, *A 47*, 2.

14. Scofield, J.H. At. and Nuc. Data Tables **1974**, *24*, 121.
15. Papp, T.; Palinkas, J. Phys. Rev. **1989**, *A 38*, 5.
16. Papp, T.; Maxwell, J.A.; Teesdale, W.J.; Campbell, J.L. Phys. Rev. **1993**, *A 47*, 1.

Received July 18, 2000

Accepted September 10, 2001

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SL120013133>